Variable Step Block Backward Differentiation Formula for Solving First Order Stiff ODEs
نویسندگان
چکیده
block method based on Backward Differentiation Formulae (BDF) of variable step size for solving first order stiff initial value problems (IVPs) for Ordinary Differential Equations (ODEs). In a 2-point Block Backward Differentiation Formula (BBDF), two solution values are produced simultaneously. Plots of their regions of absolute stability for the method are also presented. The efficiency of the 2-point BBDF is compared with variable step variable order non block BDF (NBDF) method. Numerical results indicate that the resulting 2-point BBDF method outperform the NBDF method in both execution time and accuracy.
منابع مشابه
On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملFifth Order Variable Step Block Backward Differentiation Formulae for Solving Stiff ODEs
The implicit block methods based on the backward differentiation formulae (BDF) for the solution of stiff initial value problems (IVPs) using variable step size is derived. We construct a variable step size block methods which will store all the coefficients of the method with a simplified strategy in controlling the step size with the intention of optimizing the performance in terms of precisi...
متن کاملMicrosoft Word - Numerical Solution of Extended Block Backward Differentiation Formulae for Solving Stiff ODEs
Abstract—Existing Block Backward Differentiation Formulae (BBDF) of different orders are collected based on their competency and accuracy in solving stiff ordinary differential equations (ODEs). The strategy to fully utilize the formulae is optimized using variable step variable order approach. The improved performances in terms of accuracy and computation time are presented in the numerical re...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کامل